Phenylpentafluorosilicate Anion; ¹⁹F Nuclear Magnetic Resonance Evidence

By RONALD KIRK MARAT and ALEXANDER F. JANZEN* (Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2)

Summary The existence of the six-co-ordinate phenylpentafluorosilicate anion $[PhSiF_5]^{2-}$ in solution is confirmed by ¹⁹F n.m.r. spectroscopy.

In the absence of structural data, compounds of empirical composition M_2RSiF_5 or $(R_4N)_2RSiF_5^1$ may be formulated as double salts, *i.e.* $[R_4N]_2[RSiF_4]F$ containing five-co-ordinate $[RSiF_4]^-$ rather than six-co-ordinate $[RSiF_4]^2$ -anions. An earlier attempt to distinguish between $[RSiF_4]^-$ and $[RSiF_5]^{2-}$ anions in solution was unsuccessful because the ${}^{19}F$ n.m.r. spectra were dominated by exchange effects,² but the problem of verifying the existence of six-co-ordinate silicon species in solution is important in view of the proposal, advanced from time to time,^{3,4} that reaction mechanisms of silicon compounds involve six-co-ordinate intermediates.

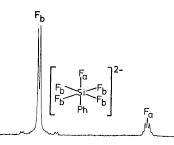


FIGURE. The ¹⁹F n.m.r. spectrum of $[Pr_4N]_2[PhSiF_5]$ (0.41 mmol) in dichloromethane (0.5 ml) at -28 °C recorded on a Bruker WH90 spectrometer at 84.66 MHz. Chemical shifts were measured relative to internal C_6F_6 and are reported to high field of CFCl₃. F_a, 121.3 p.p.m.; F_b, 114.5 p.p.m.; $J(F_a-F_b)$ 11.0 Hz.

We find that a slight excess of $Pr_{a}^{n}NF$ converts all $[PhSiF_4]^-$ into six-co-ordinate $[PhSiF_5]^{2-}$ in dichloromethane solution, as verified by ¹⁹F n.m.r. spectroscopy at -28 °C (Figure). Coupling of basal fluorine atoms to 29Si may be seen in the Figure, $J(F_b^{-29}Si)$ 181.8 Hz. Exchange effects in samples of $[PhSiF_5]^{2-}$ are minimized by reducing the concentration of [PhSiF₄]-, PhSiF₃, and trace impurities⁴ and by lowering the temperature.

Attempts to recrystallize [Prn₄N]₂[PhSiF₅] from 1:1 chloroform-ethyl acetate or 1,2-dimethoxyethane resulted in the precipitation of $[Prn_4N][PhSiF_4]$ as the least soluble material while the more soluble $Pr_{a}^{n}NF$ remained in solution. Samples of [Prn₄N]₂[PhSiF₅] in dichloromethane with an excess of F⁻ and 8-10% HF₂⁻ decomposed at room temperature within 2 weeks to give C_6H_6 , Prn_3N , SiF_6^{2-} , and SiF_5^- as the major products.

(Received, 8th June 1977; Com. 550.)

¹L. Tansjö, Acta Chem. Scand., 1964, 18, 456, 465; J. J. Moscony and A. G. MacDiarmid, Chem. Comm., 1965, 307; R. Müller and C. Dathe, Chem. Ber., 1965, 98, 235; K. Licht, C. Peuker, and C. Dathe, Z. anorg. Chem., 1971, 380, 293. ² F. Klanberg and E. L. Muetterties, Inorg. Chem., 1968, 7, 155.

³ See e.g., H. Meerwein and T. Bersin, Annalen, 1929, 476, 113; B. Helferich and W. Reimann, Chem. Ber., 1947, 80, 163; R. K. Iler,
⁵ The Colloid Chemistry of Silica and Silicates, Cornell University Press, Ithaca, New York, 1955; R. J. P. Corriu and M. Leard, Chem. Comm., 1971, 1086; R. J. P. Corriu, F. Larcher, and G. Royo, J. Organometallic Chem., 1976, 104, 293.
⁴ J. A. Gibson and A. F. Janzen, Canad. J. Chem., 1972, 50, 3087; R. K. Marat and A. F. Janzen, ibid., 1977, 55, 1167; R. E.

Wasylishen, G. S. Birdi, and A. F. Janzen, Inorg. Chem., 1976, 15, 3054.